The energetics of a three-state protein folding system probed by high-pressure relaxation dispersion NMR spectroscopy.

نویسندگان

  • Vitali Tugarinov
  • David S Libich
  • Virginia Meyer
  • Julien Roche
  • G Marius Clore
چکیده

The energetic and volumetric properties of a three-state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been investigated using pressure-dependent (15) N-relaxation dispersion NMR from 1 to 2500 bar. Changes in partial molar volumes (ΔV) and isothermal compressibilities (ΔκT ) between all the states along the folding pathway have been determined to reasonable accuracy. The partial volume and isothermal compressibility of the folded state are 100 mL mol(-1) and 40 μL mol(-1)  bar(-1) , respectively, higher than those of the unfolded ensemble. Of particular interest are the findings related to the energetic and volumetric properties of the on-pathway folding intermediate. While the latter is energetically close to the unfolded state, its volumetric properties are similar to those of the folded protein. The compressibility of the intermediate is larger than that of the folded state reflecting the less rigid nature of the former relative to the latter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.

Biological function depends on molecular dynamics that lead to excursions from highly populated ground states to much less populated excited states. The low populations and the transient formation of such excited states render them invisible to the conventional methods of structural biology. Thus, while detailed pictures of ground-state structures of biomolecules have emerged over the years, la...

متن کامل

Phi-value analysis of a three-state protein folding pathway by NMR relaxation dispersion spectroscopy.

Experimental studies of protein folding frequently are consistent with two-state folding kinetics. However, recent NMR relaxation dispersion studies of several fast-folding mutants of the Fyn Src homology 3 (SH3) domain have established that folding proceeds through a low-populated on-pathway intermediate, which could not be detected with stopped-flow experiments. The dispersion experiments pro...

متن کامل

NMR studies of protein dynamics and structure

................................................................................................... 9 Introduction............................................................................................. 10 Aim of this thesis........................................................................................................ 10 Adenylate kinase...............................................

متن کامل

Visualizing transient dark states by NMR spectroscopy.

Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter com...

متن کامل

Measurement of methyl axis orientations in invisible, excited states of proteins by relaxation dispersion NMR spectroscopy.

Few detailed studies of transiently populated conformations of biological molecules have emerged despite the fact that such states are often important to processes such as protein folding, enzyme catalysis, molecular recognition and binding. A major limitation has been the lack of experimental tools to study these often invisible, short-lived conformers. Recent advances in relaxation dispersion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 54 38  شماره 

صفحات  -

تاریخ انتشار 2015